
A Design for a BloomFilter Variant Based Cloud
Database Validation System

Arun Swaminathan1, Udit Mehta2, Puneet Kohli3, Mihil Ramaiya4

Department of Computer Engineering and Information Technology, College of Engineering Pune
Shivajinagar, Pune, Maharashtra, India.

Abstract— As databases become increasingly ubiquitous, one
of the relevant problems involves maintaining data in a
consistent and error free manner across remote systems.
Considering the magnitude of data contained in the diverse
existing types of databases, the bottleneck occurs at
transmission bandwidth of the network during the
synchronized exchange of database information during
updates. As opposed to a complete cell by cell comparison for
all tuples required for database validation - In this paper, the
proposed design achieves validation of a source database with
a remote target in constant space complexity by passing a data
structure, Bloom Filter as a message. Any discrepancy is
reported in a verbose manner and the false probability rate
based on the bloom filter parameters can be tuned to achieve
an optimal balance between spurious hits and transmitted
message size. The analysis of three bloom filter variants
namely Scalable, Cuckoo and Standard Bloom filter is carried
out to test feasibility in the context of the proposed design by
measuring their computation time and the size of the bloom
filter array produced that will be transmitted across the
network.

Keywords— Bloomfilter, Databases, RDBMS, Validation,
Compression

I. INTRODUCTION

Databases have become ubiquitous for both commercial
and noncommercial applications. Depending on the usage
scenario, they have varied sizes ranging from a few
megabytes to petabytes and may be RDBMS or NoSQL in
nature. One of the prerequisites of most applications
involve this data being maintained in an error-free and
consistent manner and in synchronization across multiple
remote systems. This is achieved through an arduous, well-
timed exchange of database information and updates across
the network with the bottleneck occurring at the
transmission bandwidth of the network.
Bloom filters are a data structure having a bit array and a
set of hash functions associated for populating the array. It
can posit whether an element is a part of the set or not with
a certain probability of occurrence of false positives.
Typical validation would involve two systems, a source and
target machine - with the target verifying the presence or
alteration of a tuple with the desired facility of verbose
error reporting. If any discrepancy is detected during the
analysis of the Bloom Filter sent as a message, it may
initiate a cell by cell transfer or comparison.
Significant savings in terms of bits transmitted across the
network can be obtained by passing the data structure
Bloom Filter as a message among systems involving
validation. Processing during compression or

decompression as well as lookup computation time are
secondary metrics in this particular application as
compared to the transmission size and false positive rate.
This paper aims to analyze the performance of three
variants of Bloom Filters and the tuning of their parameters
for remote database validation using cloud based message
passing to determine which delivers the least false
probability ratio while minimizing the size of the
compressed network message.

II. LITERATURE REVIEW

A. Bloom Filter
Bloom filter originated in 1970s and since has been widely
used as a space-efficient alternative for fast matching in IP
routing, in distributed databases for element membership
query problems and other network applications.
A compact set representation is provided by standard
bloom filters. They support insert and lookup operations.
The False Positive(FP) rate of a Bloom Filter can be tuned.
The query result would either be “definitely not” or
“probably yes”. The trade-off is between the efficiency and
the space that the bloom filter requires.
There are k-hash functions. All bits are initially “0”. In
order to hash an item, k-hash functions insert the item in k-
positions bit by bit, thereby setting k-bits to 1. For lookup,
k bits corresponding to the hash functions are checked. If
all the k-bits are “1”, then the item may be present and the
query returns true. However, this may be a false positive
but false negatives are absent in Bloom Filters.

B. Bloom Filter Variants
Bloom-1 or Fast Bloom Filter has a slightly higher false
positive rate given a memory size but reduces the overhead
for query operations [1]. The new Scalable Bloom Filter
provides false positive rate as low as 21.3% of the dynamic
Bloom filter presented before and the querying CPU time
increasing logarithmically rather than linearly [2].
Large data sets can successfully be validated using a series
of Bloom filters (where each BF validates one subset of the
database) whose error rate can be controlled by enlarging
the capacity of the DBA. These bloom filters provide high
performance as they can be accessed in parallel [3]. A
bloom filter variant for fast and scalable applications such
as secure broadcast in wireless networks involves the use of
Tiger hash function that has greater resistance to collisions
due to nonlinear avalanche bit generation. Compact
mapping is done by using LSFR counter arrays and whole
design can be reconfigured by FGPA implementation [4].

Arun Swaminathan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2329-2331

www.ijcsit.com 2329

One-Hashing Bloom Filter uses one base hash function and
modulo operations involving a consecutive prime numbers
set to have properties of distinct independent hash functions
while minimising the computation overhead involved in
hashing [5].A Bloom Filter variant called TinySet has
greater space efficiency along with partial support for
removals for false positive rates less than 2.8 % [6].
Another approach involves a Bloom Filter based tree that
works by assigning bloom filters to a fraction of interior
nodes for searching a data element in tree structured-data
and can prune out subtrees from the dataset [7]. A tree
structured Bloom Filter has ‘i’ hash functions (‘i’ being the
depth of the tree), constant time complexity and uses 1
Dimensional Bit array for efficient storage of bits
[8].Cuckoo filters store the fingerprints of bits in hash
tables due to which items can dynamically be added or
removed. Moreover, it uses substantially low space (when
FP rate is less than 3%) and provides better lookup
performance [9]. A bloom filter variant called Partitioned
BF (Par-BF) involves a trade-off balance between low-
overhead and fast performance using a group of formulas to
tune essential parameters for dynamic data sets. It supports
fast matching in parallel and outperforms Scalable Bloom
Filter and Dynamic Bloom Filter(DBF) with a memory
overhead less than DBF through it’s garbage collection
policy [10].

The metrics for performance measurement for a Bloom
Filter include memory requirement, false positive rate and
overhead for queries. Bloom filters are valid in applications
where false positives can be tolerated but false negatives
are unacceptable [11].

III. METHODOLOGY

Fig 1. Overall system diagram for a cloud-based validation system using

bloom filter

1. Create a Bloom Filter from the Source Database.

This is done by using each row as a single entry
into the bloom filter. The efficiency of generating

this bloom filter can be quickened by parallelizing
the entry into the bloom filter by splitting the total
number of rows among threads where each
performs hashing over it’s allotted dataset.

2. This bloom filter is sent to the cloud server over
the web interface using the HTTP interface. The
size of the bloom filter determines the amount of
bandwidth utilized in this transaction and can be
reduced by using a bloom filter variant that uses
compression on it’s internal computed data
structure that shall be passed as a message.

3. While implementing care, the above two steps has
to be maintained that there should be no false
negativity introduced, and the false positive rate
shouldn’t be too high as there is a tradeoff
involved in the data structure size and false
positive probability rate.

p – False positive probability
k – Number of hash functions
n – Size of the input
m – Size of the bloom filter

4. The cloud server maintains snapshots of every
bloom filter sent to it, for target databases to
validate themselves at different points of time.
Also an updates to a particular bloom filter
snapshot can be stored as a new snapshot or the
same bloom filter can be rewritten, to save server
memory. If historical database validation is
desired, a versioning system of these snapshots
can be maintained on the server.

5. The target database can send an HTTP request to
the cloud server requesting a bloom filter
(snapshot) corresponding to a particular source
database instance at a given time.

6. The target bloom filter can validate itself against
the received bloom filter and it can be found out
which rows of the target are not maintained with
integrity or are missing in the source, due to
various reasons such as corruption of primary key.

IV. RESULTS

Fig 2. Comparison of the sizes of the bloom filter generated v/s the false

positive probability

Arun Swaminathan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2329-2331

www.ijcsit.com 2330

Fig 3. Comparison of the time taken to generate the bloom filter v/s the
false positive probability

We compared three different variants of bloom filters
(standard, cuckoo and scalable) on the basis of their false
positive probability, size of bloom filter data structure
computed and the time taken to generate the bloom filter.
These parameters decide the effectiveness of using the
bloom filter in the aforementioned architecture and
application.
We have fixed the number of rows to 1 million records in
the source/target database for each test, and the test is run
on a machine with 8GB RAM, Intel i7 4th Generation, 2.4
GHz X8.
For each test, we have varied the false positive probability,
to find the minimum possible size of the bloom filter bit
array that is generated per variant and the time taken to
generate this bit array and for encapsulating it to be sent as
a network message. The above graphs measure space of the
network message and time taken for generating it as a
function of the false positive probability rate that is
achieved.
In the first graph we can see that standard bloom filter has
the lowest file size generated in comparison to the other
two variants. This goes in accordance with the theory that
there is an overhead with the cuckoo and scalable filters
when we create the data structure.
In the second graph, we can see from our experimentation
that the scalable filter is created in the shortest time. Hence
in time critical application it would be more beneficial to
go with a scalable bloom filter.
From both the experiments we can see that the cuckoo filter
has both moderate file size and generation time.
Thus by looking at the above two graphs, we can conclude
that when size is a major consideration and not time, we
should stick to the standard bloom filter, whereas the
scalable can be chosen when time is critical. Cuckoo filter
has an intermediate performance so it can be chosen when
both factors are important.

V. CONCLUSION

The design elucidated in the paper would use Bloom Filter
variants to remotely validate large databases in cloud
environments. Through the results, it may be inferred that
for this scenario, the standard bloom filter is best applied in
networks with low bandwidth whereas a scalable bloom
filter can be employed when the metric is quick creation
time.
This system can be extended to maintain a cloud based
library of snapshots for target databases to validate against
previous states of a source database. Thus, significant
savings in terms of transmission bandwidth can be
achieved.
Since the false probability rate, hash functions and other
parameters can be tuned, this design with constant space
complexity will find versatile applications in remote
database validations.

REFERENCES
[1] P. Reviriego, K. Christensen and J. A. Maestro, "A Comment on

“Fast Bloom Filters and Their Generalization”," in IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 1, pp.
303-304, Jan. 1 2016.

[2] K. Xie, Y. Min, D. Zhang, J. Wen and G. Xie, "A Scalable Bloom
Filter for Membership Queries," IEEE GLOBECOM 2007 - IEEE
Global Telecommunications Conference, Washington, DC, 2007, pp.
543-547.
doi: 10.1109/GLOCOM.2007.107

[3] J. Wei, H. Jiang, K. Zhou and D. Feng, "DBA: A Dynamic Bloom
Filter Array for Scalable Membership Representation of Variable
Large Data Sets," 2011 IEEE 19th Annual International Symposium
on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, Singapore, 2011, pp. 466-468.

[4] K. Saravanan and A. Senthilkumar, "Investigation on bloom filter and
implementation of 3k combined parallel tiger bloom filter
design," Electronics and Communication Systems (ICECS), 2014
International Conference on, Coimbatore, 2014, pp. 1-7.

[5] J. Lu, "One-hashing bloom filter," 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS), Portland, OR, 2015, pp.
289-298.doi: 10.1109/IWQoS.2015.7404748

[6] Gil Einziger Roy Friedman “TinySet - An Access Efficient Self
Adjusting Bloom Filter Construction” CS-2015-03 – 2015, Technion,
Computer Science Department- Technical Report

[7] M. Wang and Y. Zhu, "Bloom Filter Tree for Fast Search in Tree-
Structured Data," 2015 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV,
2015, pp. 18-23.

[8] Yongquan Fu and Ernst Biersack. 2015. Tree-structured Bloom
Filters for Joint Optimization of False Positive Probability and
Transmission Bandwidth. SIGMETRICS Perform. Eval. Rev. 43, 1
(June 2015), 437-438

[9] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D.
Mitzenmacher. 2014. Cuckoo Filter: Practically Better Than Bloom.
In Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies (CoNEXT '14)

[10] Yi Liu, Xiongzi Ge, David H. C. Du, and Xiaoxia Huang. 2014. Par-
BF: a parallel partitioned Bloom filter for dynamic data sets.
In Proceedings of the 2014 International Workshop on Data Intensive
Scalable Computing Systems (DISCS '14). IEEE Press, Piscataway,
NJ, USA, 1-8.

[11] O. Rottenstreich and I. Keslassy, "The Bloom Paradox: When Not to
Use a Bloom Filter," in IEEE/ACM Transactions on Networking, vol.
23, no. 3, pp. 703-716, June 2015.

Arun Swaminathan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2329-2331

www.ijcsit.com 2331

